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Social Informatics

Who is and will be important?
— Current Standard — centralities
— Future — secondary actors, emergent leaders

What happens if an influential actor is removed?

What are the core issues ?
— \\talk"
— Critical words — communicative reach

What can be done to effect change?
Who will be the next leader?

What happens if a group is disbanded?
Who has influence where?

How can key actors be influenced?

g 2020 oD ght © 2020 Kathieen M. Carlev — Directo
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Network Effects

. |

The more people you are The more you are on the The more you are
connected to the more path between people the connected to others who
you can know more you can control are connected to each
other the more influence
they have on you and
|
¢ASo: you on them
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o i Key Points About Key Actor
Metrics

e There is an analogous graph level metric for all node
level metrics

e Shortest path metrics have poor scale properties

e Local versus global influence
— “atrophication of influence”

e Metrics are influenced by size and density
e Metrics may or may not take weighted links into account

e Theoretically - Social capital, homophilly and power
underlie key actor metrics
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Overview on Metrics
o Level e Graph level
— Node level — Cohesive
— Dyad level ¢ E.g. density
— Graph level — Spread
¢ Node level e E.g. characteristic path length
— Direct — Lumpiness
e E.g. degree e E.g. clustering coefficient
— Path based — Min, max, mean, std. dev of node
e E.g. betweenness level metrics
— Tterative ¢ 2 (and n) mode metrics
« E.g. page rank — Folding
— Meta-networks

Carnegie Mellon
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Common Graph Level Metrics

Metric

Size

Link count

Density

Isolate count

Component count
Reciprocity

Characteristic path length
Clustering coefficient

Size

Number of nodes (people) in the network

Matters because as size increases
— Density decreases
— Clustering increases

Reflects network boundary
Should always be included as a covariate
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Density

e Number of ties, expressed as percentage of the number of
ordered/unordered pairs

e Number of ties / Number of possible ties

o If number of nodes = N and number of ties is M, then M/(N*(N-1)) if
directed and M/((N*(N-1))/2) if undirected

Low Density (25% High Density (39%)
clSl Avg. Dist.y=(2.270 ) Avg. Dist. = 1.76
(D)

Carnegie Mellon
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5= Density & Size are Negatively
Correlated
e In STEP study we have data from 24 coalitions at

baseline

¢ We correlated size and density and discovered a
negative association as predicted:

e R=-0.69
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Reciprocity (Mutuality, Symmetry)

e Mutual ties: A > B then B>A

e Some relations are inherently symmetric or
asymmetric
— Who did you have lunch with?
— Who did you go to for advice?

e Reciprocity is calculated as the percent of ties
that are reciprocated:

R= (Aij =1) &(Aji =1)

(4, =Dor(4, =)

Characteristic Path Length

il
e Also referred to as average path length

e The average distance from a specific node /to all other
nodes in the network is defined naturally as

diiy =1fin - D Y"_,dii )

I

— Where d(i,j) is the geodesic distance between nodes i and j

e The characteristic path length of the network is defined
as the average of these over all nodes in the network, or

d=1/nY",d()
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Average path length

# the path length between two nodes
A and B is the smallest number of
edges connecting them:

I(4, B) =min (4, 4, ... A, B)

# the average path length of a network
over all pairs of V nodes is

L={i4, B))
= UNIN-1)2_, 5 I(4, B)

# the network diameteris the maximal
path length between two nodes:
D =max (4, B)

Fproperty. 1=L=D=<N-1

13

Carnegie Mellon

Geodesic Distance Matrix

CT—
@a /’d
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Average Distance

e Average geodesic distance between all pairs of nodes

e

Core/Periphery Clique structure
c/p fit = 0.97, avg. dist. = 1.9 clp fit = 0.33, avg. dist. = 2.4
clSl
O & ——osn © Steve Borgatti 2004 .
(m negie Mellon
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Diameter

e Maximum distance between any pair of nodes

e

“S.s Diameter = 3 Diameter =

!s ne 2020 © Steve Borgatti 2004 16
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Clustering Coefficient

e A measure of degree to which nodes in a graph tend to
cluster together

¢ Defined as:

3 x number of triangles number of closed triplets

" number of connected triples of vertices number of connected triples of vertices’

Carnegie Mellon

Clustering coefficient

» the neighborhood of a node A is the
set of &, nodes at distance 1 from A

» given the number of pairs of neighbors:
F;= 23,3' 1
= k.; (k4 -1) /2

» and the number of pairs of neighbors
that are also connected to each other:

B =]
» the clustering coefficient of A is
C,=E,/F, <1
» and the network clustering coefficient.

(=2, C, <1

hasi B h (SciAm’'03) J
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Degree distributions
NN
frequency

f, = fraction of nodes with degree k
= probability of a randomly
selected node to have degree k

k degree

We are often interested in finding the probability
distribution that best fits the observed data

Carnegie Mellon

Degree distribution ‘connectivity)

» the degree of a node A is the number
of its connections (or neighbors), &,

» the average degree of a network is

(B =N 2k,

» the degree distribution function P(k)
is the histogram (or probability) of the
node degrees: it shows their spread
around the average value

s

The degree of Ais 5

number of nodes

i HlG S5 ) 1251 —— BN
b 7 B 9 10 01 12

“ node degree
@&h—I < Slide by K & Barahasi Bonahean (SciAm'03)
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Power-law of Total Degree

I
e Power-law distribution gives a line in the log-log plot

log p(k) = -a logk + logC

frequency log frequency a

degree log degree

e a: power-law exponent (typically 2 < a < 3)

Carnegie Mellon
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Other Key Graph Level Metrics
I
¢ Average Degree Centrality
e Average Betweenness
e Average EigenVector Centrality

e Standard Deviation of ...
e Assortativity

e Modularity

e Factions
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Power & Position

e Many network metrics are designed to capture power or
influence
— Betweenness, Degree, Information-Centrality ...

e Good — but don't go far enough
— These measures are frequently highly correlated
e Often due to large number of individuals who are equivalently low
— Individuals who are top are often obvious
e e.g. the president or CEO
e Particularly true with political elite data gathered from news
e Extend ability to identify powerful individuals
- E.g., the emergent leader
— E.g., the power behind the throne
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Network Elite

I
¢ Nodes that stand out as high/low on some measure

e Power

— Bonacich power centrality = out-degree (row) centrality when
beta=10

Access to resources, information, people

Ability to mobilize others (reach)

Ability to control the flow of information

Ability to give orders

Ability to broker between groups

Carnegie Mellon
IS [ Feat

Identifying Network Elite

I
e Centrality Approach
— How much matters
e Brokerage
— Who you connect matters
e But..
— It matters what is flowing through the network
o It matters if network is multi-mode, multi-plex, multi-
way
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Centralities

Degree Centrality
— Node with the most connections
Betweenness Centrality
— Node in the most best paths
e Requires symmetric data in some tools but not ORA
Eigenvector Centrality
— Node connected best overall
e Doesn't work if there are components in some tools
Closeness Centrality
— Node that is closest to all other nodes

Issue: Measures are highly correlated

Carnegie Mellon
ISTEe

Who Is “"Key” ?

)
o )
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Degree Centrality

¢ Degree — total number of edges/ nodes ego is connected to
— Commonly thought of as a measure of influence or importance

¢ In Degree — total number of nodes that send edge to ego

(column)
e Out Degree — total number of nodes that receive edge from
ego (row)
e Sink — 0 in degree; Source — 0 out degree
01010 N In Out Total
10010 & B A2 2 4
10001 A C B2 2 4
00101 D) E/ g 2 z :
easds 01100 0y s

Carnegie Mellon
]
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Degree Centrality

e Number of edges incident upon a vertex
— dg =6, whiled;; =1
e Sum of degrees of all nodes is twice the
number of edges in graph
e Average degree = density times (n-1)
e Index of exposure to what is flowing througt
the network

— Gossip network: central actor more likely
to hear a given bit of gossip
e Interpreted as opportunity to influence & be
influenced directly
e Predicts variety of outcomes from virus

resistance to power & leadership to job
satisfaction to knowledge
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Who Is “"Key” ?
.
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Betweenness Centrality

Frequency with which a node lies along the shortest path between
two other nodes ’
b — z Sy

Computed as:
Ij g}]

where g;; is number of geodesic paths from i to j and g, is number
of those paths that pass through k

Index of potential for gate-keeping, brokering, controlling the flow,
and also of liaising otherwise separate parts of the network

Interpreted as indicating power and access to diversity of what
flows; potential for synthesizing

Sometimes interpreted as “connecting” groups
Very “expensive” to compute
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Closeness Centrality

e Measured as:
— Sum of distances to all other nodes
— Computed as marginals of symmetric geodesic distance matrix

e Closeness is an inverse measure of centrality

e Index of expected time until arrival for given node of
whatever is flowing through the network
— Gossip network: central player hears things first

IS [ Feat

Eigenvector Centrality

¢ A node will have a high score if it is connected to many nodes that
are themselves highly connected

e Computed as:

Av=Av

where A is adjacency network and V is eigenvector centrality. V is
the principal eigenvector of A

¢ Indicator of popularity and group-bonding

o Like degree, this is an index of exposure, risk

e Tends to identify centers of large cliques

¢ Often identified as leader of self-contained group, sometimes
referred to as leader of leaders

‘s.’ Very “expensive” to compute Adapted from Steve Borgatti 2004
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Bi=  Characteristics of networks
relation to Measures
I

Allow/Ignore | Symmetric/ |Binary/ Connected/
Self-Loops Asymmetric | Weighted | Disconnected

Degree yes yes yes no
Betweenness no yes yes no
Closeness no yes yes yes
Eigenvector yes no yes yes
Clustering yes yes no no
Coefficient
(11

[ 2,

Carnegie Mellon

Illustrative Network
"= S

N WA

L @
SO Rar'c | Degree | Betweenness | Eigenvector |
1 Al12 Al A12
2 A7 A3 A2
3 Al, A2, A7 A6
A16, A6
4 Al4, A12 A18
Al5,
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Moving Beyond Single Measures

n

I Issue: Centrality Measures are highly correlated

Betweenness °

A
Bridge!

Sink? Or
Source?

Carnegie Mellon
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Simple SNA Measures
Measure Definition Meaning Usage
Degree Node with the most In the know Identifying sources for
Centrality connections intel; Reducing
information flow
Betweenness | Node in the most best | Connects groups | Typically has political

paths
Needs symmetric data

influence, but may be
too constrained to act

Eigenvector

Node most connected

Strong social

Identifying those who

centrality to other highly capital can mobilize others
connected nodes

Closeness Node that is closest to | Rapid access to Identifying sources to
all other nodes all information acquire/transmit

information
Betweenness | High in betweenness | Connects Go-between; Reduction
- Centrality but not degree disconnected in activity by
O centrality groups disconnecting groups
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i Brokerage
Connections Among ...
B
N Brokerage Roles
A c
Coordinator
© @
Representative Gatekeeper
.
O
WO
Liaison
BlSl
%!& ——-— © Steve Borgatti 2004

Carnegie Mellon
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Brokerage
Common ways to measure

Common ways to Measure
e Cutpoints

e Bridges

e Structural holes

e Embeddedness in triads
e Embeddedness in cliques
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Cutpoints

i I
e Nodes which, if deleted, would disconnect net

Bob Bonnie
Biff
Bill
Betty
etsy
Mﬂ
QU A E———— © Steve Borgatti 2004 "
(Iﬂrne,':ie Mellon
H )
Bridge

A tie that, if removed,
would disconnect net

[

(D
&lﬂ‘_]u.gnz. ci © Steve Boragatti 2004 42
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Structural Holes

Robert took over James'job. Entrepreneurial Robert expanded
the social capilal of the job by reallocating network time and energy
to more diverse contacls.

Itis the weak connections (structural holes) between Robert's
contacts that provide his expanded social capial.

Robert is more posiioned at the crossroads of communication
between social clusters within his firm and its markel,
and so i better positioned to craft projects and policy
Ihat add value across clusters.

James “ee.,

-

b T

Research shows that people %,

i Robert, bete posiionedfor %waunn o .- oomeanmse=""?
enrepreneurial opportunity, are the

ey to integrating across functions and

across the people of increasingly diverse backgrounds in today's
flatter organizations. In research comparisons between managers
like James and Robert, it is the people fike Robert who get promoted

faster, eam higher compensation, receive better performance evaluations, and perform more successfully on teams.
Slide from Ron Burt

Carnegie Mellon
A

Structural Holes

Local Betweenness

The structural hole

= -

Few structural holes
Many structural hole

Measured by:
Burt’s effective size
c‘s.s Burt’s constraint
Everett & Borgatti's ego betweenness - This last is recommended

D Cobvrigh © 2020 Kathleen M. Carlev — Director — CASQ R M
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Familiar Secondary Actors

T
e Leaders
e Latent leaders — most likely
to sway populace when
leaders removed
e Gatekeepers o
— Betweenness
— Even better — high
betweenness low degree
— Individuals with high
structural holes

Critical for impacting
— Who has access to what
information
— Who gets what job
— Etc.

Carnegie Mellon

isrES Secondary Actors — One Mode
Data

o Gatekeepers
— Access to information, jobs,
— High betweenness and low degree centrality

e Power Behind the Throne
— Ability to mobilize
— Node — structurally most similar to ego
¢ Absolute and relative similarity
¢ Number of “contacts” in common
e Latent Leader
— Strong if current leader is removed

— High degree after ego is removed
based on degree centrality
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Two Mode Metrics

-
e Many types of 2 Mode Metrics
Quantity

Variance
Correlation
Specialization

e Many type of N Mode Metrics
Quantity

Coherence
Substitution
Control

Carnegie Mellon
IS [ Feat

Two-Mode Data
-
Plus
e Often easier to collect (e.g., co-publishing)
e Two-mode data seems to provide more privacy
e Allow non-human analysis

Minus

e SNA metrics (betweenness, closeness,
eigenvector, etc.) imply “flows”

¢ Are they network data at all?

Sales information

c ‘ s .s wacRics optinftation
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Sales m%rmatlon
Opti r&ation

Mag?etics [

Person Avg. Shared Knowledge
Larry 3.50
Terry 3.00
Chuck 275
Andrea 2.00
Meindl 1.75

Carnegie Mellon
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Approach: Meta-Networks

Management Techniques

Meta-Matrix entities People Knowledge/ Events/ Groups/
Resources Tasks Organizations cireud
People Social network Knowledge Attendance Membership
Network/ Network/ network General Mnearin o
Resource Assignment > \cﬂz/
Network Network C”C"'AES‘Q PhySics
Knowledge/Resources Information Needs network Organizational madPbtics o ¥ 4
Network/ capability sates fmaton "
Substitution
Network
Events/Tasks Temporal Institutional
Ordering/ support or
Task Flow/ attack
Precedence
Organizations Interorganizational
network

Krackhardt & Carley (1998)
Carley (2002)

508
GASE3,
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Meta-Network KEY ACTORS

|
Cognitive Exclusivity
Demand critical ability

emergent leader
Q 0

2=
=t =

Redundancy Inverse similarity
backup alike in what we
don’t do

Carnegie Mellon
i stiute for
IS Eeecd

Many Specific Two-Mode Metrics

e Current ORA measures:

columnDegreeCentrality, inDegreeCentrality, outDegreeCentrality, rowDegreeCentrality,
columnCount, rowCount, edgeCount, capability, knowledgeLoad, resourceLoad, density,
rowBreadth, columnBreadth., columnDegreeCentralization, inDegreeCentralization,
outDegreeCentralization, rowDegreeCentralization, knowledgeDiversity, resourceDiversity,
relativeCognitiveSimilarity, cognitiveSimilarity, relativeSimilarity, correlationSimilarity,
relativeCognitiveDistinctiveness, cognitiveDistinctiveness, correlationDistinctiveness,
relativeCognitiveResemblance, cognitiveResemblance, correlationResemblance,
relativeCognitiveExpertise, cognitiveExpertise, relativeExpertise, correlationExpertise,
knowledgeExclusivity, resourceExclusivity, taskExclusivity, exclusivityComplete, exclusivity,
columnRedundancy, rowRedundancy, knowledgeRedundancy, accessRedundancy,
resourceRedundancy, assignmentRedundancy, knowledgeAccessIndex, resourceAccessIndex,

» C(lassification: Four concept groups of measures
* Node level + dyad level + network level metrics
e [Knowledge] for any kind of affiliation (events, ...)
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1. Quantity

- i
Count or average the entries of a matrix

e Degree
— Node: Counting the row or column entries  d,
of a two mode network
— Wasserman and Faust (1994), Borgatti and
Everett (1997)

K]

e Load S AK

— Network: Density, average amount of |A]
[knowledge]

2L AKGL))

Carnegie Mellon

Illustration of Quantity:
Actual ﬂorkload

e The knowledge an agent uses to perform the tasks to which it
is assigned.

e Actual Workload for agent ‘i’ is defined as follows:
— (AK * KT * AT")(i,i) / sum(KT)

e Input: AK : binary — variable; AT : binary - variable; KT :
binary — permanent;

e Output Re [(),1]
e Standard Deviation of Actual Workload (AW):

S :\/i(AW,. —AW) (N-1)
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2. Variance

Distribution of connections in networks

¢ Centralization S [e(p) — e(pi)]
— Network: skewness of node level values €~ max S lelpx) — e(pi)]
— Freeman (1979)
. . |A‘
e Diversity w =Y AK(i k)
— Network: Is [knowledge] rather equally =
distributed or concentrated? K|
— Hirschman (1945), etc. W=">
k=1

IS [ Feat

3. Correlation

Matrix that describe similarities/dissimilarities
between all pairs of agents
e Similarity M = AK - AK’
agents have he same [knowledge]? ") = M) for 1< <14
« Distinctiveness § =M, j)/w()
— Dyad: Complementary [knowledge] . — S 2i86.)
e Resemblance | A
— Dyad: Agents have the exact same knowledge
e Expertise
— Node: Degree of dissimilarity between agents
sCar/ey (2002)
®

gASo
(D
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4. Specialization

Identify agents that have either exclusive or redundant
connections

e Exclusivity
|K|

— Node: Exclusively connected L o
x; =Y [AK(i,j)-exp(1 = > AK(:j))]
to [knowledge] ; Z

— Ashworth and Carley (2006)

e Redundancy
— Network: different agents sharing the same knowledge.
— Carley (2002)

e Access

— Node: Critical connections to [knowledge]

— Ashworth and Carley (2006)

s
lSl

Illustration of Specialization:
Redundancy

e Modes: Agents x Tasks

e Average number of redundant agents assigned to
tasks. An agent is redundant if there is already an
agent assigned to the task.

e Redundancy occurs only when more than one agent is

assigned to a task. Define the assignment redundancy
for task j as follows:,d ;= max{0,sum(AT(:, j)) -1} 1< j <|T|

17|
e Then Assignment Redundancy = (Z de/|T|
j=1
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Exclusivity Index

e Detects agents who have singular knowledge.

e The Knowledge Exclusivity Index (KEI) for agent i is
defined as follows:

Zu{\ AK(i, ]) * e(l—sum(AK(:,j)))

j=1

e The values are then normalized to be in [0,1] by dividing
by the maximum KEI value.

Exclusivity

Connection of people with [knowledge] which is shared
by no other or at least a small number of other people

People with high [knowledge] exclusivity are critical
people with low [knowledge] exclusivity are substitutable
Company: Knowledge redundancy is 0.286

Person Exclusivity,
Knowledge
Andrea 0.121
Chuck 0.124
o2 Larry 0.232*
. Meind| 0.023
000 - a aaan Terry 0.179

sssssssssss

AVG 0.136

o
c‘ s .s Mag*etics Opt\r*atlon
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Additional Specialized Measures Exist
Particularly Ones Using N Mode metrics

e Performance

— Diffusion
— Accuracy

e Loads

— Cognitive demand
— Workload
— Potential Work Load

e Congruency — fit

— Communication
— Knowledge
— Resource

¢ Need for Negotiation

e Under Supply
eASOS

Carnegie Mellon

Illustration of Control:
Cognitive Demand

The cognitive effort the individual has to do on average

e How many tasks do you do

How much knowledge do you have

How much knowledge is needed to do the tasks

How many people do you need to interact with to do the tasks
How many other tasks and so people depend on you

How many other tasks and so people do you depend on




CASOS

Carnegie Mellon
]

IS [ Feat

A Simple Version of PageRank

R(v)
R(u) =c —
( ) ’Uezl;u Nv

u: a node
V: a hode

B,: the set of u’s in-degree links (v are nodes
pointing to u)
N,: the number of outdegree links of node v

c: the normalization factor to make ||R||; =1
(HR[1= IRy + ... + Ry [)

IS [ Feat

K-Shell Decomposition

Given an undirected graph G=(V,E), k-shell decomposition works in
a series of steps iteratively:

k=1: we start by removinﬁ all nodes with degree 1 and the
associated edges; assign these nodes to 1-shell

k=2: we remove all nodes of (remaining) degrees of 2 or less, and
the associated edges; assign these nodes to 2-shell

k-shell: we remove all nodes of (remaining) degrees of k or less,
and the associated edges; these nodes are k-shell nodes

The process stops when no nodes are left. The last k is kmax

k-core: the graph formed by the nodes that have not been removed
at step k

k-crust: the graph formed by all the nodes in k’-shells, k'=1, ...,k
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- K-Shell Decomposition:

k-Shell Index & N_etwork Structures

. Be(:jsides its degree, now each node is also assigned a k-shell
index
— denote by shell(v) for a node v; let deg(v) denotes v's degree
— give us another “bivariate” (or “multivariate”) distribution
<deg(v),shell(v)>
e Some simple facts:
— shell(v) <= deg(v) for all v; and clearly if deg(v)=1, shell(v)=1
— a high degree node may have low k-shell index: for any v w/
arbitrary deg(v)>1, its k-shell index can be as low as 2
— for v, if the largest degree of its neighbor is d, then shell(v)<=d+1
— If vis part of s-clique (and thus deg(v)>=s), then shell(v) >=s.
e Connected components in 1-crust: singleton nodes and
isolated edges
e Connected components in 2-crust: stars and stars connected
via a path

Carnegie Mellon
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Summary on Metrics
I
e Level e Graph level
— Node level — Cohesive
— Dyad level ¢ E.g. density
— Graph level — Spread
e Node level e E.g. characteristic path
— Direct length
« E.g. degree — Lumpiness
— Path based e E.g. clustering coefficient

— Min, max, mean, std. dev of

e E.g. betweenness .
node level metrics

— Iterative
e E.g. page rank

e 2 (and n) mode metrics
— Folding
— Meta-networks




